Exploring Parameter Space in Reinforcement Learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring parameter space in reinforcement learning

This paper discusses parameter-based exploration methods for reinforcement learning. Parameter-based methods perturb parameters of a general function approximator directly, rather than adding noise to the resulting actions. Parameter-based exploration unifies reinforcement learning and black-box optimization, and has several advantages over action perturbation. We review two recent parameter-ex...

متن کامل

Exploring Multi-action Relationship in Reinforcement Learning

In many real-world reinforcement learning problems, an agent needs to control multiple actions simultaneously. To learn under this circumstance, previously, each action was commonly treated independently with other. However, these multiple actions are rarely independent in applications, and it could be helpful to accelerate the learning if the underlying relationship among the actions is utiliz...

متن کامل

Exploring the Superimposed Oscillations Parameter Space

The space of parameters characterizing an inflationary primordial power spectrum with small superimposed oscillations is explored using Monte Carlo methods. The most interesting region corresponding to high frequency oscillations is included in the analysis. The oscillations originate from some new physics taking place at the beginning of the inflationary phase and characterized by the new ener...

متن کامل

Reinforcement Learning in Continuous Time and Space

This article presents a reinforcement learning framework for continuous-time dynamical systems without a priori discretization of time, state, and action. Based on the Hamilton-Jacobi-Bellman (HJB) equation for infinite-horizon, discounted reward problems, we derive algorithms for estimating value functions and improving policies with the use of function approximators. The process of value func...

متن کامل

Deep Reinforcement Learning in Parameterized Action Space

Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Paladyn, Journal of Behavioral Robotics

سال: 2010

ISSN: 2081-4836

DOI: 10.2478/s13230-010-0002-4